More, M., Odou, G. \& Lefebvre, J. (1987). Acta Cryst. B43, 398-405. Sato, K., Iwai, M., Sano, H. \& Konno, M. (1984). Bull. Chem. Soc. Jpn, 57, 634-638.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1995a). PLATON. Molecular Geometry Program. University of Utrecht, The Netherlands.
Spek, A. L. (1995b). PLUTON. Molecular Graphics Program. University of Utrecht, The Netherlands.
Steiner, T. (1994). J. Chem. Soc. Chem. Commun. pp. 2341-2342.

Acta Cryst. (1996). C52, 2468-2470

trans-Bis(methylamine-N)bis(1-methyl-cytosine- N^{3})platinum(II) Bis[tetrachlorothallate(III)]

Ennio Zangrando, ${ }^{a}$ * Lucio Randaccio, ${ }^{a}$ Fabio Pichierri, ${ }^{a}$ Bernhard Lippert ${ }^{b}$ and Dagmar Holthenrich ${ }^{b}$
${ }^{a}$ Dipartimento di Scienze Chimiche, Università degli Studi di Trieste, I-34127 Trieste, Italy, and ${ }^{b}$ Fachbereich Chemie, Universität Dortmund, D-44221 Dortmund, Germany.
E-mail: zangrando@univ.trieste.it

(Received 13 March 1996; accepted 23 May 1996)

Abstract

The crystal structure of the title compound, trans-bis-(methylamine- N) bis (4-amino-1-methyl-2(1H)-pyrim-idinone- N^{3}) platinum(II) bis [tetrachlorothallate(III)], [Pt$\left.\left(\mathrm{CH}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}\right)_{2}\right]\left[\mathrm{TlCl}_{4}\right]_{2}$, consists of square-planar $\mathrm{Pt}^{1 \mathrm{I}}$ cations arranged on a crystallographic inversion center and distorted tetrahedral TlCl_{4}^{-}anions. The compound is very similar to known cytosine complexes of the trans-[$\left.\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pt}(1-\text { methylcytosine })_{2}\right] X_{2}$ type. The distortion in TlCl_{4}^{-}and in other anion-containing compounds is discussed.

Comment

The title compound, (I), was obtained during our continuing research on the chemistry of heterobimetallic complexes bridged by cytosinate ligands (amino deprotonated, hereinafter $1-\mathrm{MeC}^{-}$). These complexes have the general formulae trans-[$\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pt}(1-$ $\left.\left.\mathrm{MeC}^{-}\right)_{2} \mathrm{Pd} L\right]\left(\mathrm{NO}_{3}\right)_{n}(L$ is a neutral or anionic ligand; Krumm, Lippert, Randaccio \& Zangrando, 1991; Krumm, Zangrando, Randaccio, Menzer \& Lippert, 1993; Mealli, Pichierri, Randaccio, Zangrando, Krumm, Holthenrich \& Lippert, 1995) and trans-[($\left.\mathrm{NH}_{3}\right)_{2} \mathrm{Pt}(1-$ $\left.\mathrm{MeC}^{-}\right)_{2} \mathrm{Hg} X_{2}$ (X is $\mathrm{Cl}^{-}, \mathrm{NO}_{3}^{-}$; Krumm, Zangrando,

Randaccio, Menzer, Danzmann, Holthenrich \& Lippert, 1993). The rings of the $1-\mathrm{MeC}^{-}$ligands bridging the metals present the same orientation with respect to the $\mathrm{N}-\mathrm{Pt}-\mathrm{N}$ vector (a head-to-head arrangement). Attempts at obtaining similar heterobimetallic complexes containing $\mathrm{Tl}^{\text {III }}$ were unsuccessful and led to the formation of the title compound.

(I)

In the complex cation of (I), the Pt atom is positioned on a crystallographic inversion center resulting in a head-to-tail arrangement of cytosine rings (Fig. 1). The $\mathrm{Pt}-\mathrm{N} 3$ (of $1-\mathrm{MeC}$) and $\mathrm{Pt}-\mathrm{N} 5$ (of amine) bond lengths are 2.023 (6) and 2.046 (7) \AA, respectively. The coordination around N 3 is distorted, with the Pt -N3-C4 angle [121.8 (5) ${ }^{\circ}$] significantly larger than the $\mathrm{Pt}-\mathrm{N} 3-\mathrm{C} 2$ angle [117.6(5) ${ }^{\circ}$]. The two coplanar 1MeC ligands are mutually trans with respect to rotation about the $\mathrm{N} 3-\mathrm{Pt}-\mathrm{N} 3^{\prime}$ vector and form large dihedral angles of $73.9(2)^{\circ}$ with the N_{4} coordination plane, possibly for steric reasons. The cation geometry is very similar to that reported for the corresponding bis(amino) complex trans-[(NH3) $\left.)_{2} \mathrm{Pt}(1-\mathrm{MeC})_{2}\right]^{2+}\left(\mathrm{NO}_{3}^{-}\right.$ salt: Lippert, Lock \& Speranzini, 1981; ClO_{4}^{-}salt: Brown \& Lock, 1988) where the same orientation of the nucleobases has been observed. Although the present Pt complex, when isolated from aqueous solution by slow evaporation, displays the cytosine bases in a head-to-tail arrangement, the corresponding head-to-head rotamer, with the cytosines in the same orientation, has also been isolated (Holthenrich, Sóvágó, Fusch, Erxleben, Fusch, Rombeck \& Lippert, 1995).

(II)

The geometry of the TlCl_{4}^{-}anion is characterized by two longer [Tl- $\mathrm{Cl} 12.440(2)$ and $\mathrm{Tl}-\mathrm{Cl} 2$ 2.421 (3) \AA] and two shorter [$\mathrm{Tl}-\mathrm{Cl} 32.395$ (2) and $\mathrm{Tl}-\mathrm{Cl} 42.402(2) \AA$ distances. Correspondingly, the $\mathrm{Cl1}-\mathrm{Tl}-\mathrm{Cl} 2$ and $\mathrm{Cl} 3-\mathrm{Tl}-\mathrm{Cl} 4$ angles are 111.2 (1) and $121.9(1)^{\circ}$, respectively, with the other angles

Fig. 1. ORTEPII drawing (Johnson, 1976) of (I) showing the atomlabelling scheme. Displacement ellipsoids are shown at the 50% probability level.
at Tl ranging from 103.7 (1) to $109.1(1)^{\circ}$. This squashed tetrahedral structure is similar to that found in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}^{+} . \mathrm{TlCl}_{4}^{-}$(Millikan, Mackay, James \& Bastow, 1988), where the $C_{2 \nu}$ symmetry cation exhibits two longer $\mathrm{Tl}-\mathrm{Cl}$ bonds of 2.423 (7) \AA, subtending an angle of 124.7 (4) ${ }^{\circ}$, and two shorter distances of 2.395 (7) \AA, subtending an angle of $113.0(4)^{\circ}$. Few other examples of TlCl_{4}^{-}anions have been reported, their geometries varying from exact T_{d} symmetry (Kahwa, Miller, Mitchel, Fronczek, Goodrich, Williams, O'Mahoney, Slawin, Ley \& Groombridge, 1992), with $\mathrm{Tl}-\mathrm{Cl}$ bond lengths of 2.393 (3) and $2.42(1) \AA$, to $C_{3 v}$ symmetry (Lenck, Dou \& Weiss, 1991), with one $\mathrm{Tl}-\mathrm{Cll}$ distance of $2.388 \AA$, three $\mathrm{Tl}-\mathrm{Cl} 2$ distances of $2.400 \AA$ and $\mathrm{Cl1}-\mathrm{Tl}-\mathrm{Cl} 2$ and $\mathrm{Cl} 2-\mathrm{Tl}-\mathrm{Cl}^{\prime}{ }^{\prime}$ angles of 107.7 and 111.2°, respectively. Lower $C_{2 v}$ and C_{s} symmetries, although less distorted, have been found in two compounds, namely KTlCl_{4} (Glaser, 1980) and trans[(ethylenediamine) ${ }_{2} \mathrm{Co}^{\mathrm{IIII}} \mathrm{Cl}_{2}$] $\left.\mathrm{TlCl}_{4}\right]$ (Brodersen, Rath \& Thiele, 1972). In the latter, the distances vary from 2.412 (2) to 2.423 (2) \AA and the angles from 106.6 to 113.2°, whereas in the former, all the $\mathrm{Tl}-\mathrm{Cl}$ distances are equal at 2.433 (3) \AA, but two angles of 114.8 (1) and $106.9(1)^{\circ}$ are observed. Such a variability in the TlCl_{4}^{-} geometry is even more pronounced than that observed in $\mathrm{CuCl}_{4}{ }^{2-}$ (Kahwa et al., 1992), whose geometry varies from the apparent average room-temperature T_{d} symmetry to variously distorted $D_{2 d}$ geometries, the shorter $\mathrm{Cu}-\mathrm{Cl}$ distances being observed in the ion of highest symmetry, as in the TlCl_{4}^{-}anion.

Experimental

trans- $\left[\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{2} \mathrm{Pt}(1-\mathrm{MeC})_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \quad(0.101 \mathrm{~g}, \quad 0.16 \mathrm{mmol})$ was dissolved in water $(10 \mathrm{ml})$ and $\mathrm{TlCl}_{3}(0.0497 \mathrm{~g}$, 0.16 mmol) was added. The title compound crystallized within 3 d at 295 K in 31% yield. Crystals suitable for analysis were obtained by recrystallization from aqueous solution. Accord-
ing to IR spectroscopy, the colorless precipitate is identical to the crystal isolated. Analysis found: C $12.4, \mathrm{H} 2.1, \mathrm{~N} 10.0, \mathrm{Cl}$ 23.9\%; calculated: C $12.0, \mathrm{H} 2.0, \mathrm{~N} 9.3, \mathrm{Cl} 23.6 \%$.

Crystal data

$\left[\mathrm{Pt}\left(\mathrm{CH}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}\right)_{2}\right]-$ $\left[\mathrm{TlCl}_{4}\right]_{2}$
$M_{r}=1199.83$
Monoclinic
$P 2_{1} / n$
$a=7.4346(10) \AA$
$b=15.8698$ (10) \AA
$c=12.5590(10) \AA$
$\beta=96.91$ (1) ${ }^{\circ}$
$V=1471.0(3) \AA^{3}$
$Z=2$
$D_{x}=2.709 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction:
ψ scan (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.028, T_{\text {max }}=$ 0.037

4284 measured reflections 4246 independent reflections

Refinement

Refinement on F
$R=0.0351$
$w R=0.0384$
$S=1.08$
2638 reflections
151 parameters
H -atom parameters not refined
$w=1 / \sigma^{2}(F)$

Mo $K \alpha$ radiation

$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=11.9-20.9^{\circ}$
$\mu=16.43 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Cubic
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$
Colorless

$$
\begin{aligned}
& 2638 \text { observed reflections } \\
& {[I>3 \sigma(I)]} \\
& R_{\text {int }}=0.030 \\
& \theta_{\max }=30^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=0 \rightarrow 22 \\
& l=0 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \text { frequency: } 66.6 \text { min } \\
& \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.01 \\
& \Delta \rho_{\text {max }}=1.13 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.93 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Tables
2.2A, 2.2C and 2.3.1)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {eq }}$
Pt	$1 / 2$	$1 / 2$	$1 / 2$	$0.0194(1)$
O 2	$0.2100(7)$	$0.6318(4)$	$0.5232(5)$	$0.036(2)$
N 1	$0.3688(9)$	$0.7515(4)$	$0.5673(5)$	$0.025(2)$
N 3	$0.5154(8)$	$0.6258(4)$	$0.5253(5)$	$0.023(2)$
N 4	$0.8214(9)$	$0.6231(5)$	$0.5148(6)$	$0.033(2)$
Cl	$0.2003(12)$	$0.7951(6)$	$0.5821(9)$	$0.043(3)$
C 2	$0.3577(9)$	$0.6677(5)$	$0.5376(6)$	$0.023(2)$
C 4	$0.6758(9)$	$0.6674(5)$	$0.5347(6)$	$0.024(2)$
C 5	$0.6859(10)$	$0.7527(5)$	$0.5661(7)$	$0.029(3)$
C 6	$0.5314(11)$	$0.7912(5)$	$0.5801(7)$	$0.029(3)$
N 5	$0.3872(11)$	$0.5143(5)$	$0.3442(6)$	$0.041(2)$
C 51	$0.4279(17)$	$0.5913(8)$	$0.2839(8)$	$0.059(4)$
T 1	$0.34667(5)$	$0.07767(2)$	$0.65821(3)$	$0.0360(1)$
$\mathrm{Cl1}$	$0.4253(4)$	$-0.0383(2)$	$0.7828(2)$	$0.0526(8)$
Cl 2	$0.0746(4)$	$0.1488(2)$	$0.6981(2)$	$0.0614(9)$
$\mathrm{Cl3}$	$0.5984(4)$	$0.1722(2)$	$0.6909(2)$	$0.0537(8)$
Cl 4	$0.2598(4)$	$0.0161(2)$	$0.4849(2)$	$0.0511(8)$

Table 2. Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$

$\mathrm{P}-\mathrm{N} 3$	$2.023(6)$	$\mathrm{Tl}-\mathrm{Cl} 2$	$2.421(3)$
$\mathrm{P}-\mathrm{N} 5$	$2.046(7)$	$\mathrm{Tl}-\mathrm{Cl} 3$	$2.395(2)$
$\mathrm{Tl}-\mathrm{Cll}$	$2.440(2)$	$\mathrm{Tl}-\mathrm{Cl} 4$	$2.402(2)$
$\mathrm{N} 3-\mathrm{Pl}-\mathrm{N} 5$	$92.9(3)$	$\mathrm{Cl} 2-\mathrm{Tl}-\mathrm{Cl} 4$	$103.7(1)$
$\mathrm{Pl}-\mathrm{N} 3-\mathrm{C} 4$	$121.8(5)$	$\mathrm{Cl} 2-\mathrm{Tl}-\mathrm{Cl} 3$	$109.1(1)$
$\mathrm{Pl}-\mathrm{N} 3-\mathrm{C} 2$	$117.6(5)$	$\mathrm{Cl1-Tl-Cl4}$	$107.0(1)$
$\mathrm{Pl}-\mathrm{N} 5-\mathrm{C} 51$	$119.5(6)$	$\mathrm{Cll-Tl-Cl3}$	$103.9(1)$
$\mathrm{Cl} 3-\mathrm{Tl}-\mathrm{Cl} 4$	$121.9(1)$	$\mathrm{Cl1}-\mathrm{Tl}-\mathrm{Cl} 2$	$111.2(1)$

The highest difference Fourier peak and deepest trough were located near the Pt and Tl atoms, respectively.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CELDIM (Enraf-Nonius, 1989). Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MolEN. Program(s) used to refine structure: MolEN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: PARST (Nardelli, 1983).

This work was supported by the Deutsche Forschungsgemeinschaft and the MURST (Rome)

[^0]
References

Brodersen, K., Rath, J. \& Thiele, G. (1972). Z. Anorg. Allg. Chem. 394, 13-18.
Brown, B. E. \& Lock, C. J. L. (1988). Acta Cryst. C44, 611-614.
Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Glaser, J. (1980). Acta Chem. Scand. Ser. A, 34, 75-76.
Holthenrich, D., Sóvágó, I., Fusch, G., Erxleben, A., Fusch, E. C., Rombeck, I. \& Lippert, B. (1995). Z. Naturforsch. Teil B, 50, 17671775.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kahwa, I. A., Miller, D., Mitchel, M., Fronczek, F. R., Goodrich, R. G., Williams, D. J., O'Mahoney, C. A., Slawin, A. M. Z., Ley, S. V. \& Groombridge, C. J. (1992). Inorg. Chem. 31, 3963-3970.

Krumm, M., Lippert, B., Randaccio, L. \& Zangrando, E. (1991). J. Am. Chem. Soc. 113, 5129-5130.
Krumm, M., Zangrando, E., Randaccio, L., Menzer, S., Danzmann, A., Holthenrich, D. \& Lippert, B. (1993). Inorg. Chem. 32, 2183-2189.
Krumm, M., Zangrando, E., Randaccio, L., Menzer, S. \& Lippert, B. (1993). Inorg. Chem. 32, 700-712.

Lenck, M., Dou, S. \& Weiss, A. (1991). Z. Naturforsch. Teil A, 46, 777-784.
Lippert, B., Lock, C. J. L. \& Speranzini, R. A. (1981). Inorg. Chem. 20, 808-813.
Mealli, C., Pichierri, I., Randaccio, L., Zangrando, E., Krumm, M., Holthenrich, D. \& Lippert, B. (1995). Inorg. Chem. 34, 3418-3424.
Millikan, M. B., Mackay, M. F., James, B. D. \& Bastow, T. J. (1988). J. Prakt. Chem. 330, 830-834.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Acta Cryst. (1996). C52, 2470-2473

trans-Bis(benzoato- $\mathbf{O}, \mathrm{O}^{\prime}$) $\mathbf{b i s}(\mathbf{N}, \mathrm{N}$-diethyl-nicotinamide- N^{1})copper(II)

Tuncer Hökelek, ${ }^{a *}$ Hüseyin Gündüz ${ }^{a}$ and Hacali Necefoc̆lu ${ }^{b}$
${ }^{a}$ Hacettepe University, Department of Physics, 06532 Beytepe, Ankara, Turkey, and ${ }^{b}$ Kafkas University, Department of Chemistry, 63100 Kars, Turkey. E-mail: merzifon@eti.cc. hun.edu.tr

(Received 5 March 1996; accepted 14 May 1996)

Abstract

The title molecule, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right]$, is a crystallographically centrosymmetric mononuclear complex. The two benzoate ions are coordinated to the Cu atom as bidentate ligands. The N and nearest O atoms form a square-planar arrangement around the Cu atom, with the tetragonally distorted octahedral coordination completed by the remaining two carboxylate O atoms.

Comment

N, N-Diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli, Braibanti, Pellinghelli \& Tiripicchio, 1972). The structures of some complexes obtained from the reactions of transition metal(II) ions with DENA have been determined previously; $\left[\mathrm{Cu}_{2}(\mathrm{DENA})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{4}\right]$ (Hökelek, Necefoğlu \& Balcı, 1995), $\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{4}(\text { DENA })_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Hökelek \& Necefoğlu, 1996), $\left[\mathrm{Mn}(\mathrm{DENA})_{2}(\mathrm{NCS})_{2}\right]$ (Bigoli, Braibanti, Pellinghelli \& Tiripicchio, 1973a), [Zn(DENA) $\left.)_{2}(\mathrm{NCS})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (Bigoli, Braibanti, Pellinghelli \& Tiripicchio, 1973b) and [Cd(DENA)(SCN $)_{2}$] (Bigoli et al., 1972). In $\left[\mathrm{Mn}(\mathrm{DENA})_{2}(\mathrm{NCS})_{2}\right]$, DENA is a bidentate ligand, while in $\left[\mathrm{Cu}_{2}(\mathrm{DENA})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{4}\right]$, $\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{4}(\mathrm{DENA})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cd}(\mathrm{DENA})(\mathrm{SCN})_{2}\right]$ and $\left[\mathrm{Zn}(\mathrm{DENA})_{2}(\mathrm{NCS})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, DENA is a monodentate ligand. In $\left[\mathrm{Cu}_{2}(\mathrm{DENA})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{4}\right]$, the benzoate ion acts as a bidentate ligand, but in $\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{4}\right.$ (DENA) $\left.{ }_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$, two of the benzoate ions act as monodentate ligands, while the other two are bidentate, bridging the two Zn atoms. A series of $\mathrm{Cu}^{\mathrm{II}}$ alkyl and aryl carboxylates in which the carboxylate is monodentate, cyclic bidentate or bridging, depending on the amount and coordination ability of the solvent molecule, has been reported in the literature (Meln'k, 1981, 1982; Davey \& Stephens, 1971a,b; Musaev, Movsumov, Mamedov \& Amiraslanov, 1979; Usubaliev et al., 1980, 1981; Hökelek et al., 1995; Hökelek \& Necefoğlu, 1996). The factors influencing the formation of either binuclear or mononuclear carboxylate complexes of $\mathrm{Cu}^{\text {II }}$ have been investigated, but still no clear understanding exists (Meln'k, 1981). As determined previously, $\mathrm{Cu}^{\mathrm{II}}$ benzoate forms two types of adduct with DENA, as it

[^0]: Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: BM1076). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

